(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)

S is empty.
Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)

Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
duplicate

(6) Obligation:

Innermost TRS:
Rules:
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)

Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))

The following defined symbols remain to be analysed:
duplicate

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)

Induction Base:
duplicate(gen_Cons:Nil3_0(0)) →RΩ(1)
Nil

Induction Step:
duplicate(gen_Cons:Nil3_0(+(n5_0, 1))) →RΩ(1)
Cons(hole_a2_0, Cons(hole_a2_0, duplicate(gen_Cons:Nil3_0(n5_0)))) →IH
Cons(hole_a2_0, Cons(hole_a2_0, gen_Cons:Nil3_0(*(2, c6_0))))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)

Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(10) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)

(11) BOUNDS(n^1, INF)

(12) Obligation:

Innermost TRS:
Rules:
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)

Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil

Lemmas:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)

Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)

(14) BOUNDS(n^1, INF)