(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
duplicate(Cons(x, xs)) → Cons(x, Cons(x, duplicate(xs)))
duplicate(Nil) → Nil
goal(x) → duplicate(x)
Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
duplicate
(6) Obligation:
Innermost TRS:
Rules:
duplicate(
Cons(
x,
xs)) →
Cons(
x,
Cons(
x,
duplicate(
xs)))
duplicate(
Nil) →
Nilgoal(
x) →
duplicate(
x)
Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
The following defined symbols remain to be analysed:
duplicate
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
duplicate(
gen_Cons:Nil3_0(
n5_0)) →
gen_Cons:Nil3_0(
*(
2,
n5_0)), rt ∈ Ω(1 + n5
0)
Induction Base:
duplicate(gen_Cons:Nil3_0(0)) →RΩ(1)
Nil
Induction Step:
duplicate(gen_Cons:Nil3_0(+(n5_0, 1))) →RΩ(1)
Cons(hole_a2_0, Cons(hole_a2_0, duplicate(gen_Cons:Nil3_0(n5_0)))) →IH
Cons(hole_a2_0, Cons(hole_a2_0, gen_Cons:Nil3_0(*(2, c6_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
duplicate(
Cons(
x,
xs)) →
Cons(
x,
Cons(
x,
duplicate(
xs)))
duplicate(
Nil) →
Nilgoal(
x) →
duplicate(
x)
Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
duplicate(
Cons(
x,
xs)) →
Cons(
x,
Cons(
x,
duplicate(
xs)))
duplicate(
Nil) →
Nilgoal(
x) →
duplicate(
x)
Types:
duplicate :: Cons:Nil → Cons:Nil
Cons :: a → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
hole_a2_0 :: a
gen_Cons:Nil3_0 :: Nat → Cons:Nil
Lemmas:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_Cons:Nil3_0(0) ⇔ Nil
gen_Cons:Nil3_0(+(x, 1)) ⇔ Cons(hole_a2_0, gen_Cons:Nil3_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
duplicate(gen_Cons:Nil3_0(n5_0)) → gen_Cons:Nil3_0(*(2, n5_0)), rt ∈ Ω(1 + n50)
(14) BOUNDS(n^1, INF)